
SFR 空间频率响应
光学性能测试中,SFR(Spatial Frequency Response)是空间频率响应。MTF常用于光学系统,而SFR指成像系统,成像系统包含一个光学系统。
SFR是测模组对不同空间频率的响应情况,类似于MTF算法,但测试结果同时受镜头和感光器件以及处理程序的影响,因此称这种算法叫空间频率响应SFR。
主要是用于测量随着空间频率的线条增加对单一影像所造成的影响。简言之SFR就是MTF的精简版。
因为测量MTF需取得昂贵的正弦样版,并且需换算大量的数据。因此,PIMA开发了这款较低成本的SFR作为替代品。
基本上SFR只需一个双色调的黑白斜线即可换算出约略相等于MTF的值的解像力评鉴图。
SFR是怎么测试和计算的呢。首先SFR不需要拍摄不同的空间频率下的线对。
它只需要一个黑白的斜边(刃边)即可换算出约略相等于所有空间频率。

刃边法:
在SFR计算中最主要的几步:求导+傅里叶
(1)SFR是通过这条斜边的图进行超采样的到一条更加细腻的黑白变换的直线(ESF)。
(2)然后通过这条直线求导得到直线的变化率(LSF)。
(3)然后对将这个变化率进行FFT(DFT)变换就能得到各个频率下的MTF的值。
PSF、LSF、ESF
点扩展函数PSF(Point Spread Function)、线扩展函数LSF(LineSpread Function)和边缘扩展函数ESF(Edge Spread Function)
(1)点扩展函数PSF是点光源成像后的亮度分布函数,如下图所示,用PSF(X,Y)表示。

点扩展函数是中心圆对称的,通常以沿x轴的亮度分布PSF(X,Y)作为成像系统的点扩展函数。
(2)ESF其实是一条由白变黑(黑变白)的线。
之所以SFR的测试图是一张斜边,是希望通过斜边中的多条线进行超采样,得到一条灰度变换更加平滑的线。
这样减少在后面进行频域转换之后值上的误差。 ESF放大后如下图。


LSF就是一条线上(ESF) 的变化的过程。
对于任意一条线由黑变白的过程是 由不同频率的黑白线对 组成。因此可以反过来通过分析一条线得到这些频率下的(FFT)。

当获取点光源像的亮度分布函数PSF(X,Y)后,对其进行二维傅里叶变换即可得MTF (u,v)。
因此,从理论上讲,从PSF也是获取MTF的一个方法。
但是,在实际的应用中,由于地面点光源强度很弱,此方法一般较少采用。
相对于PSF来说,LSF的能量得到了一定程度的加强。因此用LSF更好。